ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal.
نویسندگان
چکیده
The visual cycle is a series of enzyme-catalyzed reactions which converts all-trans-retinal to 11-cis-retinal for the regeneration of visual pigments in rod and cone photoreceptor cells. Although essential for vision, 11-cis-retinal like all-trans-retinal is highly toxic due to its highly reactive aldehyde group and has to be detoxified by either reduction to retinol or sequestration within retinal-binding proteins. Previous studies have focused on the role of the ATP-binding cassette transporter ABCA4 associated with Stargardt macular degeneration and retinol dehydrogenases (RDH) in the clearance of all-trans-retinal from photoreceptors following photoexcitation. How rod and cone cells prevent the accumulation of 11-cis-retinal in photoreceptor disk membranes in excess of what is required for visual pigment regeneration is not known. Here we show that ABCA4 can transport N-11-cis-retinylidene-phosphatidylethanolamine (PE), the Schiff-base conjugate of 11-cis-retinal and PE, from the lumen to the cytoplasmic leaflet of disk membranes. This transport function together with chemical isomerization to its all-trans isomer and reduction to all-trans-retinol by RDH can prevent the accumulation of excess 11-cis-retinal and its Schiff-base conjugate and the formation of toxic bisretinoid compounds as found in ABCA4-deficient mice and individuals with Stargardt macular degeneration. This segment of the visual cycle in which excess 11-cis-retinal is converted to all-trans-retinol provides a rationale for the unusually high content of PE and its long-chain unsaturated docosahexaenoyl group in photoreceptor membranes and adds insight into the molecular mechanisms responsible for Stargardt macular degeneration.
منابع مشابه
The ATP-binding cassette transporter ABCA4: structural and functional properties and role in retinal disease.
ATP-binding cassette transporters (ABC transporters) utilize the energy of ATP hydrolysis to translocate an unusually diverse set of substrates across cellular membranes. ABCA4, also known as ABCR, is a approximately 250 kDa single-chain ABC transporter localized to the disk margins of vertebrate photoreceptor outer segments. It is composed of two symmetrically organized halves, each comprising...
متن کاملInvolvement of all-trans-retinal in acute light-induced retinopathy of mice.
Exposure to bright light can cause visual dysfunction and retinal photoreceptor damage in humans and experimental animals, but the mechanism(s) remain unclear. We investigated whether the retinoid cycle (i.e. the series of biochemical reactions required for vision through continuous generation of 11-cis-retinal and clearance of all-trans-retinal, respectively) might be involved. Previously, we ...
متن کاملGene Therapy of ABCA4-Associated Diseases.
The ATP-binding cassette (ABC) transporter gene, ABCA4 (ABCR), was characterized in 1997 as the causal gene for autosomal recessive Stargardt disease (STGD1). Shortly thereafter several other phenotypes were associated with mutations in ABCA4, which now have collectively emerged as the most frequent cause of retinal degeneration phenotypes of Mendelian inheritance. ABCA4 functions as an importa...
متن کاملMolecular organization and ATP-induced conformational changes of ABCA4, the photoreceptor-specific ABC transporter.
ATP-binding cassette (ABC) transporters use ATP to translocate various substrates across cellular membranes. Several members of subfamily A of mammalian ABC transporters are associated with severe health disorders, but their unusual complexity and large size have so far precluded structural characterization. ABCA4 is localized to the discs of vertebrate photoreceptor outer segments. This protei...
متن کاملRetinopathy in mice induced by disrupted all-trans-retinal clearance.
The visual (retinoid) cycle is a fundamental metabolic process in vertebrate retina responsible for production of 11-cis-retinal, the chromophore of rhodopsin and cone pigments. 11-cis-Retinal is bound to opsins, forming visual pigments, and when the resulting visual chromophore 11-cis-retinylidene is photoisomerized to all-trans-retinylidene, all-trans-retinal is released from these receptors....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 13 شماره
صفحات -
تاریخ انتشار 2014